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As driving functions become increasingly automated, motorists run the risk of becoming

cognitively removed from the driving process. Psychophysiological measures may

provide added value not captured through behavioral or self-report measures alone.

This paper provides a selective review of the psychophysiological measures that can be

utilized to assess cognitive states in real-world driving environments. First, the importance

of psychophysiological measures within the context of traffic safety is discussed. Next,

the most commonly used physiology-based indices of cognitive states are considered as

potential candidates relevant for driving research. These include: electroencephalography

and event-related potentials, optical imaging, heart rate and heart rate variability, blood

pressure, skin conductance, electromyography, thermal imaging, and pupillometry. For

each of these measures, an overview is provided, followed by a discussion of the

methods for measuring it in a driving context. Drawing from recent empirical driving and

psychophysiology research, the relative strengths and limitations of each measure are

discussed to highlight each measures’ unique value. Challenges and recommendations

for valid and reliable quantification from lab to (less predictable) real-world driving settings

are considered. Finally, we discuss measures that may be better candidates for a near

real-time assessment of motorists’ cognitive states that can be utilized in applied settings

outside the lab. This review synthesizes the literature on in-vehicle psychophysiological

measures to advance the development of effective human-machine driving interfaces

and driver support systems.

Keywords: psychophysiology, cognition, driving, traffic safety, real-world

THE IMPORTANCE OF PSYCHOPHYSIOLOGICAL MEASURES IN
TRAFFIC SAFETY

Suboptimal level of cognitive functioning (e.g., inattention, drowsiness) is a key cause
of traffic accidents and poor driving performance. According to Traffic Safety Culture
Index, 87.5% of drivers identify distracted driving to be a greater concern today than in
past years and 87.9% perceive drowsiness as a threat to their safety (AAA Foundation
for Traffic Safety, 2018). Traffic safety researchers are constantly working on methods
to improve driving performance by assessing cognitive states, such as drivers’ workload,
inattention, and fatigue. One way to improve the assessment of covert cognitive states
is to adopt a multi-method approach to measure changes in central and peripheral
nervous system functioning in order to sense near-real time information about cognitive
states of motorists. Such assessments of internal states can also promote the development
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of Advanced Driver Assistance Systems (ADAS) that can predict
and augment risky driving behavior.

Why Adopt
Psychophysiological Measures?
Cognitive states can be assessed using subjective, behavioral,
and physiological measures (Mauss and Robinson, 2009; Strayer
et al., 2015; Lohani et al., 2018). Subjective measures can be
limiting if the assessment is disruptive to the real-time task (i.e.,
primary task intrusion, see O’Donnell and Eggemeier, 1986).
More importantly, humansmay not always be accurate inmaking
judgements about their cognitive states (Schmidt et al., 2009).
Motorists can be inaccurate in making judgments about their
internal and cognitive states (such as their attention, workload,
and drowsiness levels). For instance, motorists were inaccurate at
self-assessments of vigilance (Schmidt et al., 2009); even though
objective physiological indicators (e.g., heart rate, EEG, and
ERPs) suggested poor vigilance levels at the end of a 3-h drive,
participants self-reported improved vigilance instead (Schmidt
et al., 2009). Such misjudgments in assessment of cognitive
states suggest that objective measures are required to assess and
augment human behavior in order to reduce risk for traffic safety.
While behavioral measures (such as head movement detection to
assess distraction) are also useful, given the intent of this review,
we will focus on physiological measures. Accuracy in detecting
cognitive workload has been found to significantly increase when
physiological data was utilized (Lenneman and Backs, 2009, 2010;
Solovey et al., 2014; Borghini et al., 2015; Yang et al., 2016).
Some work has also found that physiological measures were
sensitive to variations in cognitive load during secondary tasks
while behavioral driving measures like steering wheel reversals
and velocity (Belyusar et al., 2015) and lane-keeping measures
(Lenneman and Backs, 2009) were not. Unlike behavioral
measures (e.g., verbal and facial behavior), many physiological
measures are not under voluntary control ofmotorists.Moreover,
cognitive states such as mental workload are a multi-faceted
and dynamic concept and self-report alone cannot be used to
operationalize it, but multiple measures (e.g., performance and
physiology) are warranted (de Waard and Lewis-Evans, 2014).
Thus, inclusion of physiological data can complement and extend
behavioral metrics and improve assessments of motorists’ state-
level changes in cognition (Brookhuis and de Waard, 1993;
Mehler et al., 2012).

As automation is likely to become more prevalent over
time, real-time monitoring behaviors required by motorists may
decline as they are less involved in the driving process. This is
a critical reason why non-behavior-based metrics will become
more relevant to incorporate into our understanding of the
motorists’ cognitive states. Moreover, distracted motorists of
a self-driving vehicle compared to manually driving motorists
take longer to gain control of the driving task once automation
deactivates (Vogelpohl et al., 2018). Intelligent driving assistance
systems should be capable of reliably sensing and assessing
distraction and drowsiness levels of motorists to be able to
augment safe-driving conditions. Building reliable systems to be
able to predict decreased levels of vigilance or dangerous levels of

fatigue, drowsiness, or workload could help augment them in a
timely manner (Balters et al., 2018).

Cognition in Dynamic Real-World
Driving Contexts
In general, psychophysiological measures can be used to assess
degree of arousal or activation (Mauss and Robinson, 2009).
Importantly, multiple psychological constructs can influence
variations in psychophysiological measures. For instance, heart
rate, skin conductance, and electrical activity of the brain
are sensitive to many psychological constructs experienced by
motorists, such as workload, drowsiness, stress, etc. In the
past years, important contributions have reviewed the literature
on specific cognitive states, such as workload (Borghini et al.,
2014; Costa et al., 2017), distraction (Matthews et al., 2019),
drowsiness (Sahayadhas et al., 2012; Borghini et al., 2014),
and stress (Rastgoo et al., 2018) in driving research. These
reviews provide an understanding of physiological outcomes
that can explain variations in specific constructs based on
carefully manipulated and well-controlled designs. Unlike highly
controlled lab-based settings, where a single construct (e.g.,
workload) can be successfully manipulated and its effect on
psychophysiological measures examined, real-world settings are
more dynamic and complex.

In a real-world setting, the net resulting cognitive state of a
motorist is a combination of variation among several interrelated
constructs (e.g., attention allocation, stress, workload, fatigue).
Broadly speaking, the net cognitive state of a motorist,
composed of variation among these many dimensions, can
be classified along an arousal-spectrum ranging from lower-
arousal and passive states, to a state of optimal performance,
to a hyper-aroused or over-active state. Indeed, this concept is
not new; Yerkes and Dodson (1908) established strong non-
linear relationships between arousal-level and performance,
and such relationships have since been well-established across
many human performance domains (Hebb, 1955; Broadhurst,
1959; Wekselblatt and Niell, 2015). Although these ideas are
not new, there has been a recent resurgence in a formal
understanding of arousal-performance relationships, including
an expanded understanding of the underlying neuromodulatory
systems involved in regulating task engagement and optimal
performance (e.g., the adaptive-gain control theory, Aston-Jones
and Cohen, 2005). Given the recent increase in understanding
of the mapping between physiological indices of arousal and
human performance in the lab, such models serve as a
clear starting point in delineating the predictive capacity of
psychophysiological measures for understanding cognitive states
and human performance in the vehicle.

For instance, low-arousal states relevant to the driving task can
be driven by a combination of psychological constructs including
low workload, reduced stress, and high drowsiness. On the other
hand, an over-aroused state could be due to a combination of
high workload and high stress in the presence of low drowsiness.
Similarly, other combinations of constructs can also lead to
changes in general arousal states as well. Given the likely dynamic
interplay among these interrelated constructs in applied settings,
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the current review focuses on psychophysiological measures that
can be utilized to capture motorists’ states in real-world driving
settings. Indeed, one major applied goal of this work is to be able
to accurately capture the dynamic and highly variable changes
in arousal that occur in ecologically valid driving settings, a goal
that is critical for building accurate predictive models (Yarkoni
and Westfall, 2017) of individual motorist’s states and future
driving performance.

Specifically, there are two novel contributions of this review.
First, instead of focusing on a selective construct and related
measures of interest, the goal of this current review is to
focus on psychophysiological measures that may have the
potential to be adopted in real-world and applied settings to
measure state level variations in motorists. The paper provides
a broad but selective review of a number of psychophysiological
measures that we believe show the greatest promise in their
utilization to assess low-arousal vs. over-arousal (passive vs.
over-active) states in real-world driving environments. The
most commonly used physiology-based measures of cognitive
states are considered as potential candidates relevant for driving
research. The following physiological measures are reviewed
(see section “Psychophysiological Measures to Assess Cognitive
States” and Tables 1, 2) in assessing arousal state in real-
world driving research: electroencephalography and event-
related potentials, optical imaging, heart rate, and heart rate
variability, blood pressure, skin conductance, electromyography,
thermal imaging, and pupillometry. As reviewed in classical
contributions by Cacioppo et al. (Cacioppo and Tassinary,
1990; Cacioppo et al., 2007), inference of unique psychological
constructs based on physiological indices (one-to-one relation)
is still unresolved and is not the aim of this review (see
further discussion in section “Research Applicability in Real-
World Settings”). However, we discuss how multiple measures
(that are sensitive to several interrelated internal states) may
be combined to delineate net resulting changes across multiple
inter-related cognitive state-level variations. Second, for each
measure, we make the distinction between useful research
measures and practical measures for real-world application
(see section Research Applicability in Real-World Settings and
Table 2). Throughout, we have tried to highlight the practical
relevance of measures in the driving context. Although this
review focuses primarily on on-road and simulated driving
contexts, when relevant, we have also drawn research from
related contexts (traffic operators, pilots, or ship navigators) to
more thoroughly characterize each measure.

PSYCHOPHYSIOLOGICAL MEASURES TO
ASSESS COGNITIVE STATES

Electroencephalogram (EEG) and
Event-Related Potentials (ERP)
EEG Quantification
The EEG is a record of both oscillatory and aperiodic
brain electrical activity. Neural activity (largely post-synaptic
potentials) from multiple simultaneous generators propagate
throughout the brain and skull and summate at a distance,

where voltages can be measured relatively non-invasively via
electrodes placed on the scalp. The dominant sources of scalp-
recorded EEG come from cortical pyramidal cells arranged in
the columnar organization of the cortex (Nunez and Srinivasan,
2006). Pyramidal cells are the most numerous cortical excitatory
cell type and play a critical role in advanced cognitive functions
(Spruston, 2008). The laminar organization of the cortex results
in cortical pyramidal cells following an open-field alignment
with a consistent orientation that is perpendicular to the skull,
such that their post-synaptic potentials can summate at a
distance. Importantly, EEG allows for a high temporal resolution
(millisecond) and direct record of neural activity. This detailed
temporal resolution also allows for a decomposition of the time-
domain EEG signal into spectral information via Fourier analysis,
allowing for an examination of oscillatory activity in canonical
frequency bands (e.g., alpha, ∼8–12Hz; theta, ∼4–7Hz), which
have been related to specific neurocognitive functions. For
instance, mental workload increases theta power and reduce
alpha power activity (Mun et al., 2017), whereas fatigue increases
alpha power (Käthner et al., 2014). Moreover, the development
of novel computational techniques for analyzing spectral activity
has promoted a wide range of new tools for probing ongoing
neural dynamics during human cognition via EEG; such as cross-
frequency coupling, phase coupling (Cohen, 2011), independent
component analysis (Dasari et al., 2017), and neighborhood
component analysis (Lim et al., 2018). In addition, more
traditional analyses of transient neural activity that is tied to
specific perceptual, motor, or cognitive events can be gleaned
from continuous EEG, via the calculation of event-related
brain potentials.

ERP Quantification
ERPs are electrophysiological responses that are consistently
linked in time with specific sensory, cognitive, or motor events.
They are derived from the continuously recorded EEG by time-
aligning epochs of EEG relative to an event of interest, such as
a stimulus onset or a participant’s response and averaging many
of these similar EEG segments to reveal activity that is time and
phase locked to the event. Such discrete events can be added in
the experimental design, e.g., every time a participant responded
to a secondary task while driving. The logic of this approach
is that systematic activity that is locked in time and space to
some specific activity will remain in the averaged ERP waveform,
whereas activity that is not time- and phase-locked will average to
zero with a large enough number of trials (Luck and Kappenman,
2012). The resulting ERPwaveform is plotted as voltage over time
at a given set of electrodes. ERP topography can also be examined,
showing the distribution of activity over the entire space within
a particular time-window. A major benefit of ERPs is that the
waveform has characteristic components, stereotyped features of
the ERP with specific eliciting conditions. ERP components are
defined empirically by a combination of their polarity, timing,
scalp distribution, and sensitivity to task manipulations.

Extensive work has characterized and validated specific ERP
components with respect to their associations with specific
cognitive and neural processes (e.g., Fabiani et al., 2007;
Luck and Kappenman, 2012; Mun et al., 2017). Cognitive
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TABLE 1 | Overview of relationships between arousal state and physiological indices in real-world driving.

Measure Under-arousal state Over-arousal state

Electroencephalogram • Increased alpha due to increase in drowsiness and attentional

withdrawalb

• Changes in theta and delta activity related to transition to fatigue

• Increase in theta activity due to mental workload

• Alpha activity suppression due to workload

Event related potential • Reduced ERP amplitudes with fatigue, time on task, and lower

vigilance over time while driving

• Also, reduced ERP amplitude to driving relevant stimuli under

high workload

Optical imaging for

cerebral flow

• A decrease in cerebral oxygenation with fatigue and drowsiness • An increased concentration of oxygenated hemoglobin and a

decreased concentration of deoxygenation with mental workload

and stress

Heart rate and Heart

rate variabilityb
• Decrease in heart rate with drowsiness, decrease in vigilance, use of

self-driving technology

• Increase in HRV indices (e.g., RMSSD) with drowsiness, fatigue,

and disengagement

• Increase in heart rate with mental workload and stress

• Decrease in HRV with workload, stress, and vigilance

Blood Pressureb • Decrease in blood pressure relative to baseline with fatigue

and drowsiness

• Increase in systolic BP with workload and stress

Electrodermal activity • Lower EDA relative to baseline activity range with drowsiness • EDA increase with workload, stress, lower trust in automation,

and anxiety

Electromyography • Decreases in mean and median power frequency of EMG due to

decline in muscle activities and fatigue a
• High muscle activity relative to baseline with stress

Thermal imaging • Temperature around baseline levels a • Higher task difficulty increases forehead temperature and decreases

nose temperature and thus an increase in the difference between

forehead and nose temperatures

Pupillometry • Decreases in average pupil diameter with drowsiness

• Increases in standard deviation of pupil diameter

• Increases in pupil diameter with cognitive load

• Decreases in standard deviation of pupil diameter

aLimited findings available.
bMixed findings reported.

demands can modulate several ERP components, such as P3
(discussed below; Käthner et al., 2014), mismatch negativity
(MMN is a negative ERP component sensitive to pre-attentive
information processing; Wanyan et al., 2018), and late positive
potentials amplitude (a later ERP component like P6 that is
related to attentional allocation similar to P3; Mun et al.,
2017). The P3 component is associated with attentional and
memory processes required to detect any changes in incoming
stimuli-related information (Polich, 2007). The canonical P3
has two distinct but related components – the P3a and P3b
(see Polich, 2007 for a review). The P3a, with an anterior
distribution, is associated with novel stimulus-driven attentional
processing or orienting responses. The P3b, with a centro-
posterior distribution, is associated with task-relevant stimulus-
driven attentional, decision making, and subsequent memory
processing (Polich, 2007). Both components have been used
in driving research. Recent work has also examined how
neural indices (as measured by both P3 ERP components) are
associated with subjective workload (as measured by NASA-
TLX) and how this covariation is influenced by cognitive effort
(Yakobi, 2018). Novel techniques (such as intra-block averaging
of ERP amplitudes; Horat et al., 2016) can enable robust
electrophysiological measurement of cognitive demands over
time. Thus, ERPs are an attractive measure for studying cognitive
states and performance in driving contexts.

EEG/ERP in Driving Context
EEG and ERPs have a long history in the study of the neural
indices of cognitive effort and attention allocation in both
laboratory and applied settings. EEG is perhaps one of the

most widely used neurophysiological methods to study driving
behavior. Several frequencies (e.g., power in alpha frequency
band) and time (e.g., P3) domain indices can reliably measure
changes in cognitive demands (Käthner et al., 2014). This makes
EEG is viable measure for applied driving settings.

Over-arousal in driving context
Over-aroused states, such as increased workload while driving
can be indexed by decreases in alpha power and increases
in theta power (Borghini et al., 2014; Käthner et al., 2014).
A recent study found alpha band power to be higher during
the relaxed condition compared with the engaged condition
in an autonomous driving setting (Zander et al., 2017). This
highlights the sensitivity of alpha power to internal factors such as
attentional engagement. In addition to internal factors, external
factors (such as task load and time on task) can also influence
alpha and theta power bands in opposite directions (Wascher
et al., 2018). For instance, a decrease in task load and time on task
led to an increase in relative alpha power, but a decrease in theta
power (Getzmann et al., 2018; Wascher et al., 2018). To account
for both power bands, past work has also used a ratio of frontal
theta and parietal alpha power spectral density to operationalize
workload in pilots (Borghini et al., 2015). This ratio approach
may be relevant for driving research as well, however this has
been a point of debate, as discussed shortly.

The application of known ERP indicators of attentional
workload (and their eliciting tasks) can be successfully translated
into the driving domain as well. One of the most commonly
adopted components in driving research is the P3b (Brookhuis
and de Waard, 2010; Solís-Marcos and Kircher, 2018). Mental
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TABLE 2 | Tentative framework for considering the research applicability of these measures in lab and real-world settings.

Measure Lab-setting Real-world Advantages Disadvantages

Electroencephalogram High High to medium • High temporal resolution

• Direct measure of neural activity

• Contact sensors

• Longer setup time

Event related potential High Mediuma • Same benefits as EEG

• Well-characterized components (e.g., P3)

• High temporal resolution

• Same disadvantages as EEG

• Generally needs higher number of trails and

post-processing

• Needs time-locking event

• Interpretation of amplitude is very

context specific

Optical Imaging for Cerebral

Flow

High Low to mediuma • Higher spatial resolution

• Feasible in naturalistic settings with

technical advancements

• Lower temporal resolution (e.g., fNIRS)

• Need systematic investigation/replication

Heart Rate/Heart Rate

Variability

High High • Higher signal-to-noise ratio (SNR)

• Easy to collect

• Very sensitive to artifacts

• Sensitive to variation in respiration

Blood Pressure High Mediuma • Reliable

• Higher SNR

• Limitations of equipment; can disrupt

driving task

Electrodermal activity High High • Sympathetic activity

• Easy to collect

• Lagged response

• Not all individuals show EDA response

Electromyography High Lowa • Reliable

• High temporal resolution

• Slightly longer setup time

• Sensitive to movement

• Lower SNR

Thermal Imaging High Mediuma • Low setup time

• Promising technology

• Non-contact

• Need systematic investigation/replication

Pupillometry High Lowa • Non-contact

• Quick setup time

• Signal strongly sensitive to variable lighting

conditions (pupillary light reflex)

aLimited findings available.

workload can be indexed by increases in P3b latencies (Ying
et al., 2011) and amplitude (Strayer and Drews, 2007). For
example, Strayer and Drews (2007) examined the amplitude of
the P3b time-locked to the onset of a pace break light under
single-task driving conditions or dual-tasking via cell-phone–
induced distraction. Drawing on basic experimental work that
has shown that the P3b is sensitive to the degree of attention
allocated to a task (e.g., Sirevaag et al., 1989), they also showed
that cell-phone induced distraction resulted in reduced P3b
amplitudes to brake lights. Similar effects have been observed in
comparing the workload of “single-task” driving in laboratory
simulator vs. real-life driving contexts, where for example, the
diversion of attention to other concurrent activities in the
vehicle result in additional attentional demands in real-world
driving (Strayer et al., 2015).

A recent study compared mental workload due to increased
information processing demands consumed by in-vehicle
information systems (Solís-Marcos and Kircher, 2018). They
found both P3b and N1 latencies and amplitudes to be
sensitive to cognitive demands of processing additional in-vehicle
information systems. For instance, P3b amplitudes decreased
with additional information processing related tasks (Solís-
Marcos and Kircher, 2018). P3a amplitude was also found to
decrease with additional task-related load (Getzmann et al.,
2018). High mental workload has been associated with increased
latencies in MMN during driving (Ying et al., 2011) and also
increased frontal MMN in flight simulation tasks (Wanyan et al.,
2018), however a recent study did not find workload to influence

MMN amplitudes (Getzmann et al., 2018). Future work will help
clarify sensitivity of MMN in driving research.

Under-arousal in driving context
Extensive work has focused on electrophysiological indicators
of under-arousal via EEG. A substantial number of papers have
implicated changes in alpha amplitude during fatigued driving
(e.g., Schier, 2000; Jensen and Mazaheri, 2010; Simon et al.,
2011; Zhao et al., 2012; Borghini et al., 2014; Jagannath and
Balasubramanian, 2014; Arnau et al., 2017; Brouwer et al., 2017),
such that fatigued driving is associated with increased alpha
activity. However, other work has challenged these alpha power
links with fatigue and claim that alpha power changes may be
due to the decreases in task-demands and visual input during
monotonous driving tasks and not due to decline in cognitive
processing abilities (Wascher et al., 2014). Increases in relative
alpha band power with increased time on task, easier driving
route, and lower control of driving situations, which suggested
that relative alpha power increases imply attentional withdrawal
and not fatigue (Wascher et al., 2014, 2018). Wascher et al. (2014,
2018) have argued that mid-frontal theta activity may be a more
appropriate neural marker of cognitive-control related processes
in driving than occipital alpha activity. Low task load is associated
with relatively reduced theta activity, which suggests that theta
activity is sensitive to declines in cognitive processing ability.
Instead of alpha activity, Wascher et al. (2014, 2018) recommend
that indices of oscillatory synchronization (e.g., inter-trial phase
clustering) and ERPs (such as P3a) are more reliable and valid
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indices of changes in cognitive state associated with mental
fatigue. For instance, time on task (Wascher et al., 2014), fatigue
(Massar et al., 2010), and decreases in vigilance over time
(Schmidt et al., 2009) were found to reduce P3a amplitude
while driving. Similarly, mind-wandering during driving is
associated with a reduction in P3a amplitude (Baldwin et al.,
2017). One other study found both P3a and P3b components’
amplitudes were reduced due to driving-related fatigue (Guoping
and Zhang, 2009). These findings show that ERP components
could be utilized to detect variations in neurophysiological
arousal due to interrelated cognitive constructs in
driving contexts.

Some researchers have argued that LF/HF ratios (e.g., frontal
theta/beta) are potential biomarkers for attentional control, and
have established some evidence that such measures have good
psychometric properties, for e.g., test-retest reliability (Putman
et al., 2014; Angelidis et al., 2016). Decreases in beta power
(e.g., Zhao et al., 2012; Jagannath and Balasubramanian, 2014)
have been found, along with changes in theta and delta activity
as markers related to transition to fatigue. This has led some
researchers to propose spectral ratio indices (e.g., alpha/beta;
Eoh et al., 2005; Wang et al., 2018), as biomarkers of alertness.
However, ratio indices have also been criticized for being an
inadequate method because it combines frequency bands with
distinct topographic specificity that change differently over time
(Wascher et al., 2014). There is existing criticism of this ratio
approach, especially in driving research (Wascher et al., 2018),
and more broadly, researchers in cognitive electrophysiology
have been moving away from such highly constrained “band-
based” approaches given their lack of replicability across studies.
Alternatively, researchers have increasingly endorsed methods
that allow for broad-band assessment of spectral dynamics
(e.g., 1/f scaling, Voytek and Knight, 2015) and methods that
can address narrow-band dynamics without a priori selection
of frequency (e.g., cluster-based permutation testing in time-
frequency data; Maris and Oostenveld, 2007). Other recent work
has used EEG-based detection algorithms to detect fatigue and
drowsiness (Li et al., 2017; Morales et al., 2017; Belakhdar
et al., 2018; Gao et al., 2018; Wei et al., 2018). However,
other work reported no additional benefit of utilizing EEG
measures in drowsiness and fatigue detection in sleep deprivation
contexts (Perrier et al., 2016; Liang et al., 2017). Another
line of work has aimed to apply machine-learning techniques
to brain computing interfaces in order to classify states of
drowsiness and fatigue in real-time (e.g., Lin et al., 2005; Correa
et al., 2014). Recent work has also shown data filtering and
processing techniques such as artifact subspace reconstruction
and independent component analysis could be utilized for
“online” processing of EEG data collected while driving in order
to attenuate movement-and noise-related artifacts (Krol et al.,
2017). Together, these findings suggest that EEG and ERPs can
be utilized as objective techniques to assess state-level variations
in cognitive demands.

Practical Considerations
There are a number of important considerations when applying
EEG indices to real-world driving environments. Typical EEG

artifacts arising from muscle-and-eye movements (de Waard,
1996; Zander et al., 2017), impedance shifts, environmental line
(60Hz) noise, and other complications are potentially amplified
in real-world environments. As such, real-time monitoring
of good quality EEG signals is critical for effective data
collection. The commercial introduction of high-impedance
systems with active electrodes and small electrically shielded
mobile EEG amplifiers has spawned a large increase in real-
world EEG applications. Many of these systems are capable
of high density (<128 channel) recording, but it is critical
for the researcher to decide whether and to what degree an
increase in the number of channels may result in a decrease
in the quality of the recorded EEG (Luck and Kappenman,
2012). Importantly, the well-understood limitations of the spatial
resolution of EEG limit the utility of high-density recording
in ecologically valid environments (e.g., where measurement
of EEG sensors co-localized in 3D space on a single-subject
basis may be unfeasible). Moreover, with increasing channel
density comes increases in the likelihood for poorly recorded
or poorly monitored channels during recording. As such, if
source-localization of underlying EEG/ERP generators is not
a primary aim of the methodology (and we expect, in most
applied cases it would not be), researchers may wish to
record from a smaller density (e.g., 32 channels or fewer), at
the benefit of better monitoring of data quality throughout
the experiment.

On the theoretical side—researchers in human factors
automotive research should carefully consider the linking
hypotheses between specific electrophysiological indicators (e.g.,
P3b ERP amplitude, alpha power increases) and their purported
cognitive interpretations. The ERP literature has a massive
basic literature in which specific components have been very
well-characterized relative to their eliciting conditions and
underlying cognitive interpretations (Luck and Kappenman,
2012). One such example was reviewed earlier on characterizing
the P3b under different states of distraction during driving.
Limited work (e.g., Strayer et al., 2015) has attempted to
examine ERP components in naturalistic settings. In future
work, inventive approaches can be validated to use task-
related responses or behaviors (such as eye-blink potentials or
frequent vs. infrequent vehicle cues) as discrete events that
can be recorded to estimate ERP components in real-world
settings. At the same time, such characterizations in the spectral
domain are not as clearly developed to date. However, this
is changing, as basic research in cognitive electrophysiology
shifts toward a more complete understanding of oscillatory
mechanisms underlying human perception and cognition (e.g.,
Kahana, 2006), involving development in standardized analysis
methods (Cohen, 2011), careful experimental characterization of
specific oscillatory markers (e.g., alpha phase and perception,
Mathewson et al., 2009; midline frontal theta and conflict
resolution; Cavanagh and Frank, 2014), and the development of
neurophysiologically guided models (Jensen andMazaheri, 2010;
Voytek and Knight, 2015). We expect that such development
of basic research findings in cognitive electrophysiology will
be a great asset in future applied research in contexts such
as driving.
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Optical Imaging for Cerebral Blood Flow
Optical Imaging Quantification
Optical imaging methods allow for the visualization of the
interaction of photons with tissues (Villringer et al., 1993).
In recent years, there has been a rapid advancement in the
application of non-invasive optical imaging methods such as
functional near infrared spectroscopy (fNIRS) to study human
brain and cognitive functioning. fNIRS is a neuroimaging
method based on the principles of near-infrared spectroscopy,
which was originally developed in humans for investigating
clinical features of brain functioning (e.g., cerebral oxygenation;
Jobsis, 1977). These principles have been extended to measure
local changes in cerebral hemodynamic activity that can be
used to infer information on the underlying neural activity
due to neurovascular coupling, following similar logic to the
Blood Oxygen Level Dependent (BOLD) signal in functional
magnetic resonance imaging. NIR (700–1,000 nm) light is able
to penetrate several centimeters through the skull and into
brain tissue, allowing for non-invasive measurement of certain
optical properties of cortical tissue. For example, changes in the
concentration of oxy- and deoxy-hemoglobin can be measured
via NIRS because oxy- and deoxy-hemoglobin have distinct
absorption spectra that correspond to the different coloration
of arterial and venous blood (Grinvald et al., 1986). These
absorption characteristics make it possible to use a spectroscopic
approach to measure changes in the concentration of oxy- and
deoxy- hemoglobin as a function of neural activity, for example
during cognitive task performance. In typical optical imaging
systems, optical fibers, called optodes or sources, carry NIR light
to the scalp while other optical fibers, called detectors, collect the
photons as they emerge from the scalp. Each source–detector pair
is a single channel. Multi-channel and wearable fNIRS systems
have become commercially available with diverse montages
capable of measuring brain activity across the entire scalp.

Optical Imaging for Cerebral Blood Flow in

Driving Context
The application of fNIRS in driving research is in its infancy.
Nevertheless, a number of interesting demonstrations of the
utility of fNIRS for studying over-arousal states such as driver
workload have emerged (e.g., Tsunashima and Yanagisawa,
2009; Liu et al., 2012, 2016; Sibi et al., 2016). For example,
increases in oxygenated hemoglobin have been reported during
simulated driving tasks under cognitive load compared to control
conditions (Liu et al., 2012). A recent study (Unni et al., 2017)
utilized fNIRS in a naturalistic driving simulator while doing
a secondary task (modified version of 0–4 back). They found
systematic increases in bilateral inferior frontal and temporo-
occipital brain regions with increments in workload. Another
study reported that fNIRS could be used to differentiate between
low vs. high workload (n-back task) related hemodynamic
activity in the prefrontal cortex while motorists drove in a
realistic driving simulator (Herff et al., 2017). Furthermore,
fNIRS have been used to monitor pilot’s task engagement and
working memory load in real-time (Gateau et al., 2015). On a
related note, fNIRS have been found sensitive to increase in task
difficulty in flight simulators (Causse et al., 2017) as indicated

by an increased concentration of oxygenated hemoglobin and a
decreased deoxygenated hemoglobin.

Other work has investigated effects of under-arousal
related states with fNIRS. Research has related decreases in
hemodynamic measures of cerebral oxygenation with fatigue
in simulated driving (Li et al., 2009), and findings have
been extended into actual highway driving (Yoshino et al.,
2013). An increase in fatigue can be indexed by a decrease in
cerebral oxygenation and mental stress can be indexed by an
increase in cerebral oxygenation. Tsunashima and Yanagisawa
(2009) examined changes in prefrontal activity via multi-channel
frontal fNIRS systems in driving with and without adaptive
cruise control. Their findings revealed substantial decreases
in prefrontal activity when participants drove with adaptive
cruise control relative to without, which was correlated with
perceived workload (via the NASA-TLX). Similar decreases in
activation of prefrontal cortex (lower cognitive load associated
with drowsiness) were reported while participants monitored
a simulated autonomous car driving task relative to higher
prefrontal cortex activation during manual driving task (Sibi
et al., 2016). Such findings indicate that optical imaging for
cerebral blood flow is a valuable tool for assessing performance
and neural efficiency in well-controlled realistic driving contexts.

Practical Considerations
One important limitation of fNIRS is that, because it relies on the
measurement of absorption properties of light as a function of
vascular changes in the brain, its temporal resolution is limited
by the time-course of hemodynamic activity (on the order of
seconds). In contrast, the development of recent ‘fast’ optical
imaging methods, such as the event-related optical signal (EROS;
Gratton and Fabiani, 2001, 2003), which measures scattering
properties of light as a function of changes in neural activity, have
amuch higher temporal resolution (on the order ofmilliseconds).
Although applications of this method in human factors research
is sparse, fast optical imaging methods have growing promise.
While the spatial resolution of optical imaging methods is higher
than EEG, such spatial inference is constrained by the penetration
depth of NIR light, which reaches only a few cm from the
scalp surface. Therefore, imaging of activity from deep cortical
and subcortical sources (beyond the outer cortical mantle) is
limited. Recent work has also employed wearable fNIRS systems
(Piper et al., 2014; McKendrick et al., 2016; Le et al., 2018)
and simultaneous collection of fNIRS and EEG (Kassab et al.,
2018), which can enable real-world monitoring in ecologically
valid settings.

Heart Rate (HR) and Heart Rate
Variability (HRV)
Heart Activity Quantification
Heart rate (in beats per minute or bpm) is the number of
heartbeats in 1min (Jennings et al., 1981). Electrocardiography
(ECG) is a well-established method to record the electrical
activity of the heart. In psychophysiology, a lead II configuration
(i.e., placing the negative electrode in the region of right collar
bone, the ground near the left collar bone, and the positive lead
over the lower left ribcage, or functionally similar variant) is
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commonly used to be able to record electrical activity of the
heart via research grade equipment. A single heart beat wave in
an ECG signal shows changes in electrical potentials (referred
to as the P, Q, R, S, & T components and together they are
referred to as the QRS complex, for review please see Berntson
et al., 2007). The R component (one for each heart beat) is due
to ventricular depolarization and for a lead II configuration, it
has a larger magnitude and a sharper inflection than the rest
of the components making it easily detectable. While heart rate
is a count of beat per minute, heart period (also called inter-
beat-interval) is the time in milliseconds between successive R
spikes (Berntson et al., 2007). Heart rate is generally derived by
converting mean heart period (in milliseconds) to heart rate (in
beats per minute), see Berntson et al. (2007).

Heart data can also be collected via other technique
including photoelectric plethysmography (PPG) and
photoplethysmography imaging (PPGI). PPG technique
includes use of a photocell (such as an infrared light-emitting
diode) placed over an area of tissue with blood capillaries that
is easily accessible (e.g., finger or ear lobe). Energy emitted
from an infrared source passes through the tissue and reflects
off the tissue. Changes in blood volume (due to heart beats) in
an area can thus be assessed by the amount of light that was
reflected back to the photodetector, and thus forms the basis
of estimating heart beats (Berntson et al., 2007; Laborde et al.,
2017). A similar concept is used in “wearables” which have
photo-emitters and detectors placed on a convenient location
(e.g., wrists and earlobes) making them easy to wear and collect
data from them (Byrom et al., 2018; van Gent et al., 2018). This
idea is used in vehicles with photo-emitters and detectors placed
on the steering wheels, which allow collecting heart data (heart
rate, HRV, and blood volume pulse) while driving. Another
advancement in PPG is a contactless measurement technique
called PPGI that detects color changes (e.g., the forehead area) in
a video due to blood perfusions (Blöcher et al., 2017). Instead of
photodiodes used in PPG, PPGI uses detector arrays in cameras
to collect image sequences that contain information about
bio-signals (e.g., blood volume pulse and respiration). Image and
signal processing methods are utilized for beat-to-beat heart rate
estimation (Blöcher et al., 2017; Madan et al., 2018).

On a related note, established guidelines for heart beat
detection processing, with recommended parameters to derive
heart rate and heart rate variability are provided in Jennings et al.
(1981), Berntson et al. (2007), and Shaffer and Ginsberg (2017).
Custom and open-source software has also been developed to
automatically detect R peaks to calculate heart beats. As is true
for most physiological measures, data should be visually checked
to inspect the ECG data for artifacts and irregularities. Artifacts
can be introduced in these data due to numerous reasons
(such as motorists’ excessive motion, sneezing and coughing,
and irregular heartbeats) any of which can disrupt the ECG
measurement or directly impact normal heart-beat patterns.
Visual inspection helps insure that the heart beats are correctly
marked by the detection software and physiologically improbable
values are detected and then corrected.

HRV is variability in the time intervals of adjacent heartbeats
(Berntson et al., 2007; Shaffer and Ginsberg, 2017). HRV can

be derived from ECG data over a period of time ranging from
short intervals (∼1–5min) up to longer intervals (∼24 h). HRV
metrics can be roughly categorized as falling under time-domain,
frequency-domain, or non-linear measures of HRV (for a review
see Shaffer and Ginsberg, 2017). Time domain-based parameters
calculate the variations in heart beat intervals, such as standard
deviation of R-R intervals (SDRR), percentage of successive
R-R intervals that differ by more than 50ms (pNN50), and
root mean square of successive R-R intervals (RMSSD). A few
time-domain parameters also represent geometric shape of R-
R interval distributions, such as the HRV triangular index (i.e.,
plotting the integral of the ratio of RR interval density histogram
by its height) and the baseline width of the RR intervals histogram
(TINN), for details see Shaffer and Ginsberg (2017). Frequency-
domain based measures transform the beat-to-beat variations in
heart beat (R-R intervals) into frequency power bands via Fourier
analysis (Task Force of the European Society of Cardiology,
1996). The most commonly used frequency-domain methods are
low- and high-frequency power. A low-frequency (LF) power
is the energy of heart rate oscillations in a lower-frequency
(0.04–0.15Hz) band. Similarly, high-frequency (HF) power is
the energy of heart rate oscillations in a higher-frequency (0.15–
0.4Hz) band (Task Force of the European Society of Cardiology,
1996; Shaffer and Ginsberg, 2017). A peak in these frequency
bands can also be calculated, which is an estimate of the peak
frequency in the specific frequency band. Non-linear measures
of HRV are useful in capturing the unpredictability and dynamic
nature of heart rate time-series data (Shaffer and Ginsberg, 2017).
Commonmeasures include fitting an elliptical-shape to represent
non-linear HRV and calculating approximate entropy (ApEn)
and sample entropy (SmpEn), which characterize the complex
pattern of time-series heart data (Shaffer and Ginsberg, 2017).
Detailed discussions can be found elsewhere (Task Force of the
European Society of Cardiology, 1996; Berntson et al., 2007;
Laborde et al., 2017; Shaffer and Ginsberg, 2017).

HR/HRV in Driving Context

Over-arousal in driving context
Heart rate is a commonly measured index of physiological
arousal in response to changes in driving demands. One of
the most studied over-aroused cognitive states is workload.
Numerous studies have examined changes in heart rate as a
function of workload (Lenneman and Backs, 2009, 2010; Mehler
et al., 2012; Heine et al., 2017). Heart rate was also found to
increase while performing visual and auditory dual-tasks relative
to single-task of driving in a simulator (Lenneman and Backs,
2009). Similarly, heart rate has been shown to be incrementally
higher for systematically more difficult auditory dual-tasks while
driving in a simulator (Mehler et al., 2009) as well as while driving
on-road (Reimer et al., 2009). These findings of an incremental
change in heart have been replicated in younger-aged (20–29
years old), middle-aged (40–49 years old), and older-aged (60–69
years old) adults (Mehler et al., 2012). Thus, heart rate increases
with workload due to cognitive demand (Lenneman and Backs,
2009; Mehler et al., 2012; Ruscio et al., 2017; Hidalgo-Muñoz
et al., 2018; c.f., Engström et al., 2005). Other efforts have also
been made to utilize rhythmic and morphological parameters
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of a heart activity to explore mental workload. A recent study
examined the influence of mental workload (due to a secondary
task) on morphological parameters from ECG while completing
a lane change task (Heine et al., 2017). They found that a
combination of derived HR and HRV features (such as mean
HR, RMSSD, pNN50, etc.) could be extracted from ECG data
that could distinguish between workload levels and suggest that
a combination of ECG features can be used to detect mental
workload (for details see Heine et al., 2017).

Relative to HR, a fewer number of studies have examined
HRV, especially in a systematic manner. HRV decreases with
increasing task demands (Luque-Casado et al., 2016). HRV has
been found to be sensitive to variations in attention levels
while driving that may not be necessarily evident in driving
performance (Lenneman and Backs, 2009) and thus HRV can
have more sensitivity than behavioral measures. LF- and HF-
HRV power bands are influenced by driving task (Zhao et al.,
2012; Tozman et al., 2015; Wang et al., 2018). A study (Tozman
et al., 2015) compared effect of demand levels (boredom, average
demand, and high demand) on HRV in a driving simulator. Both
LF- and HF-HRV varied for all the three conditions. High task
demands reduced both LF-HRV and HF-HRV (Tozman et al.,
2015). Some work has indicated that stress-inducing real-world
driving tasks lead to increased heart rate and decreased SDNN,
RMSSD, pNN50 (Lee et al., 2007). HRV also varies with workload
experienced by drivers during simulated driving (Zhao et al.,
2012; Heine et al., 2017; Hidalgo-Muñoz et al., 2018) and on-
road driving (Lee et al., 2007). In addition, HRV variations due to
cognitive workload have also been found in city traffic operators
(Fallahi et al., 2016) and unmanned aerial vehicles operators
(Jasper et al., 2016). HRV is sensitive to workload increases due
to vigilance and situational awareness demands of the task (Saus
et al., 2001; Stuiver et al., 2014; Jasper et al., 2016). However, at
least one study (Shakouri et al., 2018) found no variation in heart
rate variability metrics (RMSSD, LF, HF, and LF/HF ratio) as a
function of higher traffic density while driving in a simulator,
even though variations in subjective workload were found.

Under-arousal in driving context
HR and HRV are also sensitive to low-arousal states, such
as vigilance and drowsiness. Decreases in vigilance over the
course of a 3-h continuous driving task were indexed by a
significant drop in heart rate over time (Schmidt et al., 2009).
Drowsiness experienced in car drivers and aircraft pilots can also
be associated with decreases in HR (Borghini et al., 2014). A
recent on-road study (Biondi et al., 2018) found that driving a
Tesla in semi-automated mode (e.g., autopilot) led to a lower
heart rate relative to manual driving on a freeway. Another
study found heart rate was sensitive to activity of the Adaptive
Cruise Control (ACC) technology (Brouwer et al., 2017). Heart
rate increased when ACC decelerated more suddenly compared
to instances when the car decelerated more gradually (Brouwer
et al., 2017). These findings suggest that heart rate is a sensitive
measure that can assess cognitive processing pertaining to
advanced technology in semi-autonomous vehicles.

Other studies have found that LF-HRV and HF-HRV vary
with fatigue (Liang et al., 2009; Sugie et al., 2016). A recent

study (Wang et al., 2018) found that changes in fatigue levels
while driving can be represented by non-linear measures of
HRV (e.g., sample entropy). Variations in drowsiness levels can
also impact HRV (Noda et al., 2015; Piotrowski and Szypulska,
2017). Another recent study found that variations in HRV (TINN
and RMSSD) was higher when participants drove a vehicle in
automated mode relative to the manual mode (Biondi et al.,
2018). Perhaps, drowsiness and a lack of engagement in the
driving task during automated mode may have led to a higher
HRV. HRV and blink rates have also been shown to assess sleep
onset (Noda et al., 2015). HRV-based assessment algorithms can
be used for early detection of fatigue and drowsiness to augment
attention and performance (Patel et al., 2011; Zhao et al., 2012;
Abe et al., 2016; Vicente et al., 2016).

Practical Considerations
Heart rate and its variability are inexpensive and reliable
measures that are relatively easy to record with research-quality
equipment that meets recommended guidelines (Task Force of
the European Society of Cardiology, 1996). It has good signal
to noise ratio as well (R-R peaks can be detected even in very
noisy environments). Consequently, it is also not difficult to
collect in lab as well as in unpredictable field studies, especially
with the availability of mobile data recording systems. However,
these advantages can also lead to misuse of this methodology.
Great attention to the data collection and processing are required
to have meaningful data. Skin preparation (e.g., cleaning with
alcohol wipes) before electrode placement and signal monitoring
to collect good quality data can drastically reduce post-processing
(e.g., Berntson et al., 2007). Participants should be comfortably
positioned to avoid physiologically induced changes in heart rate
such as altered breathing rate due to postural adjustments. Body
movements should be minimized and accounted for as such
movements can add noise and also add movement-related heart
rate changes. Effective data cleaning to remove artifacts and noise
are a must, otherwise heart data will be uninterpretable.

Some recording devices do not utilize the traditional QRS
complex from an ECG to calculate HR and HRV. For example,
PPG uses a photoelectric sensor that estimates changes in
blood volume to calculate HR. There are a few methodological
challenges that should be considered before adopting such PPG-
based systems. PPG records a lagged cardiac response further
away from the heart (e.g., from fingers and earlobes). Unlike ECG
based estimates that have a sharp spike for the R component,
PPG-based methods instead show a less pronounced curved
peak of the blood volume pulse signal, which makes accurate
and automatic detection of heart period relatively more difficult
(Laborde et al., 2017). Moreover, ECG-based estimates of HR
and HRV are recommended for more reliable results because
it allows visual inspection and artifact correction of heart
data. Such methodological differences between PPG and ECG
can explain why PPG and ECG findings are comparable
during rest, but are not comparable during stress, for example
(Schäfer and Vagedes, 2013).

On a related note, commercialized equipment meant for
exercise and fitness tracking fail to meet established guidelines
for heart data collection and processing (e.g., minimum
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sampling rate and access to raw data for necessary artifact
correction methods), which are necessary to make meaningful
interpretations (see Berntson et al., 2007; Quintana et al., 2016;
Shaffer and Ginsberg, 2017). Similarly, smartphone camera-
based assessments have methodological challenges, including
very poor sampling rate, illumination variation (due to
confounds like weather and time of day), poor signal-to-noise
ratio, and motion-related artifacts that can lead to inaccurate
interpretations (Laborde et al., 2017; cf., Nowara et al., 2018;
van Gent et al., 2018). Ensuring the validity and inter-device
variability of wearables (which utilize a PPG-based or camera-
based HR system) with an established ECG-based equipment
is a necessary step to be able to validate data collected from
wearables. However, most commercialized equipment has not
been validated in such a manner (Quintana et al., 2016). Without
this critical validation step, data collected from commercialized
non-research grade equipment does not have convergent validity
and should be discouraged by the scientific community until such
standards aremet.While innovation is critical to be able to collect
psychophysiological data in real-world settings, careful adoption
and cross-checks with existing gold standards are necessary to
make meaningful progress in the adoption of these technologies
in real-world driving research.

Moreover, HF-HRV has been found to be impacted by
parasympathetic nervous system, however, LF-HRV is influenced
by both sympathetic and parasympathetic nervous systems
(Berntson et al., 2007; Laborde et al., 2017). Thus, LF-HRV
should not be described as a metric of sympathetic activity,
but instead be interpreted as a mixture of sympathetic and
parasympathetic influences. On a related note, the LF/HF ratio
has been a controversial metric as it assumes that LF is due
to sympathetic activity while HF is due to parasympathetic
(Billman, 2013). The LF/HF ratio was originally based on 24 h
recordings, while shorter duration recordings (even 5min long)
have also been calculated. The duration of recording (e.g.,
5min vs. 24 h) can also lead to uncorrelated findings and
some metrics are better for short term recordings than others
(Shaffer and Ginsberg, 2017).

Another metric we would like to highlight is heart period.
Heart rate and heart period have been used interchangeably,
however in some instances heart period may be a better choice.
Even though, heart rate is more commonly used metric, use of
heart period instead of heart rate is recommended measure of
autonomic activity because heart period changes more linearly
over time (Quigley and Berntson, 1996; Berntson et al., 2007).
Heart period should specially be used when comparing changes
in heart activity due to experimental manipulation or due
to between group differences for short time periods. Further
information on heart activity related metrics can be found in
detailed reviews (Jennings et al., 1981; Task Force of the European
Society of Cardiology, 1996; Berntson et al., 2007; Laborde et al.,
2017; Shaffer and Ginsberg, 2017).

Not all heart-based metrices may be sensitive to the variations
in cognitive state during driving task. For instance, a study
compared several commonly used metrices for HR and HRV
cognitive workload during highway driving (Mehler et al.,
2011). While HR was robust in differentiating between cognitive

workload in single vs. dual tasks, HRV indices were less robust
(e.g., smaller effect sizes). A few HRV indices varied with
workload (RMSSD, SDSD, and LF power), however others
(SDNN, NN50, pNN50, HF power, and LF/HF) did not
significantly differ with workload (Mehler et al., 2011). These
findings suggest that depending upon the task, certain indices
may be more sensitive to variation in cognitive state than other
indices that may be less robust.

In addition, researchers should consider other contextual
factors that may vary across participants and may confound
study interpretations. A confounding factor that can potentially
bias HF-HRV comparisons between conditions of interest is
differences in respiration (Grossman, 1992; Berntson et al., 2007;
Laborde et al., 2017). Respiration related-parameters should be
accounted for by using them as covariates with such HRV indices
(for a detailed discussion, see Berntson et al., 2007; Laborde et al.,
2017). Similarly, other factors may impact HR/HRV, including
task characteristics and motorists’ state (relaxation, engagement,
and motivation) and activities (smoking and posture). For
instance, HRV may increase over time if the task becomes less
difficult over time, which may put motorists in a more relaxed
state (Jasper et al., 2016). Similarly, HRV may also increase over
time with disengagement or demotivation to perform a difficult
task (Jasper et al., 2016). Careful consideration of contextual
factors will afford accurate and reliable measurement of HR/HRV
indices in applied driving settings.

Blood Pressure (BP)
BP Quantification
BP (in millimeters of mercury, also written as mmHg) is the
force exerted against the walls of the blood vessels (Shapiro
et al., 1996; Berntson et al., 2007). Depending upon the stage
of the dynamic cardiac cycle, BP differs from lowest to highest
levels. During a single cardiac cycle, diastolic BP is the lowest
level of arterial pressure when the heart is filled with blood
and systolic BP is relatively the highest level of arterial pressure
(Shapiro et al., 1996; Berntson et al., 2007). As invasive methods
to record BP require additional safeguards and equipment,
most psychophysiology research studies focus on non-invasive
approaches to record blood pressure. Three relatively non-
invasive methods are auscultatory or oscillometric methods,
arterial tonometry, or the volume-clampmethods (see for details,
Berntson et al., 2007). The most common method is auscultatory
measurement, which records the sounds of blood flow by
placing a cuff on the upper arm and a stethoscope placed
over the brachial artery to identify the systolic and diastolic
blood pressure (Shapiro et al., 1996; Berntson et al., 2007).
Physiological arousal during mentally effortful situations leads to
greater vasoconstriction and cardiovascular reactivity evidenced
by increased heart rate and blood pressure and decreased heart
rate variability (Lundberg et al., 1994; Ottaviani et al., 2016).
BP increases with psychological stress (Ottaviani et al., 2016)
and is correlated with self-reported stress (Lundberg et al.,
1994). However, cognitive workload may not reliably influence
BP (ElKomy et al., 2017).

Frontiers in Human Neuroscience | www.frontiersin.org 10 March 2019 | Volume 13 | Article 57

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Lohani et al. Psychophysiological Measures in Driving

BP in Driving Context
Limited research has examined over- and under-arousal via BP in
driving contexts. Systolic BP and BP variability have been found
to increase while driving in simulated high traffic conditions that
had high workload demands (Stuiver et al., 2014). Fatigue was
also associated with a decrease in systolic BP and HR (Liang
et al., 2009). However, other studies have not found a reliable
effect of stress on BP (Simonson et al., 1968; Littler et al., 1973;
Lee et al., 2007). One study found no significant change in
BP from beginning to end of the drive with a short period
of arterial pressure changes during events such as overtaking
that returned to baseline (Littler et al., 1973). BP was also not
found to vary in an on-road stressful driving task speed in
a simulator even though HRV parameters were significantly
impacted (Lee et al., 2007).

Nevertheless, BP is a very useful measure to understand the
factors that impact driving performance. One clear example of
this comes from a simulator-based study investigating aggressive
driving behavior in irregular traffic flow and under time pressure
(Drews et al., 2012). Irregular traffic patterns were not found to
impact BP. However, male drivers who were under time pressure
to drive faster in order to receive a monetary incentive, had
elevated systolic BP compared to females under time pressure
or compared to male drivers who were not under time pressure.
In fact, females did not show any elevated blood pressure
under time pressure (Drews et al., 2012). These findings suggest
that individual difference factors such as sex differences and
motivation to drive aggressively may impact driving behavior
and associated physiological signals. Other studies have shown
that trait-level variation in BP (such as a history of high BP
i.e., hypertension) is an important measure to capture health
and age-related impact on driving performance in vulnerable
older populations (Lyman et al., 2001; Siren et al., 2004). A 5-
year longitudinal study that examined the effect of urban bus
driving on BP found that the number of hours driven per week
predicted higher diastolic BP (Johansson et al., 2012), suggesting
that there are cumulative effects of cognitive demands and stress
of continuous driving.

Practical Considerations
While heart-rate was reported to rapidly change in response to
car racing, BP was “less responsive” (Simonson et al., 1968).
Other studies have found that BP does not change significantly
during on-road driving (Littler et al., 1973; Lee et al., 2007).
A few BP recording-related reasons could play a role. BP can
rapidly change over time so multiple readings are recommended
for a more accurate estimate. However, a limiting factor is
the BP equipment. The pressure from a cuff worn by the
responder can become uncomfortable and disruptive within a
few minutes. Continuous reliable BP measurement (especially
via volume-clamp) is uncomfortable, distracting, and potentially
disruptive to driving. This limits the frequency of samples that
could be collected, which are about 1 reading per minute. Also,
the BP recordings are sensitive to movement so in an on-
road study, it is less feasible to accurately record multiple BP
reading from participants while drivers are actively involved
in the driving process. While some alternative methods to

record blood pressure (e.g., plethysmography) may be available,
methodological issues similar to those discussed in recording
heart activity apply to BP as well and it is crucial to evade
poor quality unreliable equipment. In sum, BP provides valuable
insights about vulnerable states of the drivers, however, in a
real-world driving context, methodological concerns can limit
reliable data collection. Much future work is required to be able
to measure reliable and non-invasive BP activity.

Electrodermal Activity (EDA)
EDA Quantification
EDA, previously known as galvanic skin response, is a change
in electrical potentials of the skin that can be used to make
interpretations about the psychological phenomena of the
responder (Boucsein et al., 2012). EDA can be measured
via exosomatic or endosomatic techniques. Exosomatic
techniques—a more commonly used method used in applied
research—apply a small current through a pair of electrodes
and then measure electrical resistance (or its reciprocal, i.e.,
conductance) from the skin. Because the current is kept constant,
it is possible to measure changes in the voltage between the
electrodes that will vary directly with changes in skin resistance,
following Ohm’s lab (see Dawson et al., 2007 for a technical
review). Endosomatic techniques measure passive changes in
intrinsic electrical activity without application of an external
current. For details on EDA recording techniques, see Fowles
(1986), Dawson et al. (2007), and Boucsein et al. (2012). Higher
EDA is indicative of physiological arousal due to increased
sympathetic autonomic nervous activity (Dawson et al., 2007;
Lohani and Isaacowitz, 2014). EDA is sensitive to physiological
reactivity and many other factors, such as respiration and mental
effort (Dawson et al., 2007). Commonly derived EDA metrics
(Dawson et al., 2007; Boucsein et al., 2012) include slowly varying
tonic level of electrical conductivity (skin conductance level;
SCL) and phasic increase in magnitude electrical conductance in
response to an unexpected or relevant event (skin conductance
response; SCR). Non-linear EDA metrics that can differentiate
between increased cognitive load vs. recovery phases of stressors
have been identified as well (Visnovcova et al., 2016).

EDA in Driving Context
In driving research, systematic variation in several arousal-
related constructs can impact EDA. Most commonly investigated
is cognitive workload. SCL is higher during increased workload
in dual-task relative to single-task driving (Mehler et al., 2012). A
systematic investigation of workload increments in one on-road
driving study (Mehler et al., 2012) found a systematic increase in
SCL as a function of three levels of auditory workload secondary
tasks relative to single driving task for young, middle, and older
age groups. These findings suggest that SCL can be used to
index workload levels in driving context. High SCR has also been
found to increase with workload experienced by motorists while
driving on difficult road types that required avoiding more traffic
and making more decisions (Schneegass et al., 2013). A recent
study reported SCR amplitude increased with cognitive load due
to dual-task driving (Ruscio et al., 2017). Additional workload
experienced due to texting and navigation (Seo et al., 2017) and
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speeding (Kajiwara, 2014) while simulated driving was also found
to increase EDA.

EDA also varies with other physiological arousal-related
constructs. EDA based indices can be used to detect stressful
events during driving (Affanni et al., 2018). A recent study
utilized feature extraction and discrimination processing
techniques to classify EDA data into low, medium, vs. high
stress levels with about 82% recognition rate (Liu and Du, 2018).
Another recent study found higher SCLs when participants drove
a simulated vehicle in autonomous mode compared to manual
mode (Morris et al., 2017). Higher skin conductance levels
could be indicative of lower levels of trust in the autonomous
mode than manual mode. State anxiety during simulated
driving was also found to be associated with SCL (Barnard and
Chapman, 2018). Another recent study found that relative to
sleepiness, higher skin conductance levels are found during
wakefulness, effects which are indicative of comparatively higher
sympathetic activity (Schmidt et al., 2017).

Practical Considerations
In driving contexts, EDA is shown to vary due to many cognitive
states, such as workload, stress, anxiety, sleepiness, all of which
are influenced by sympathetic nervous system activity. This
allows the use of EDA in assessment of various psychological
phenomena (Dawson et al., 2007). Therefore, caution should
be exercised while interpreting changes in EDA in an applied
and less-controlled setting as it is sensitive to not one, but
many psychological variables. In the driving context, careful
choice of filters to remove artifacts (Affanni et al., 2018) and
identification of cognition-related features (Chen et al., 2017; Liu
and Du, 2018) that have been successfully implemented could
be utilized to improve accuracy and detection. One disadvantage
of EDA is that it has a slower response (lag of 1–3 s) after
the stimulus has occurred (Dawson et al., 2007). In instances
when near-real time physiological responses need to be detected,
EDA may be relatively slower (than cardiovascular measures).
Another point to consider is that, similar to other physiological
measures, not all individuals have the expected skin conductance
response (Dawson et al., 2007). This is another reason to avoid
reliance on a single measure, but multiple channels, to capture
the psychological phenomena of interest.

Electromyography (EMG)
EMG Quantification
EMG is used to measure the electrical activity generated by
muscle fibers (Fridlund and Cacioppo, 1986; van Boxtel, 2001).
Surface EMG is captured by placing small surface electrodes
on specific muscles of interest, which is then digitized and
amplified to record muscle activity (Fridlund and Cacioppo,
1986). Numerous features can be extracted from the EMG signals.
Root mean square of the signal (in microvolts) is a recommended
and commonly reported EMG signal amplitude (Fridlund and
Cacioppo, 1986). Other commonly assessed statistical features
are peak spectral density, peak amplitude, and peak frequency.
A specific muscle’s activity can provide insights into the
psychological processes underplay. For instance, the smilemuscle
(or zygomaticus major) and the frown muscle (or corrugator

supercilii) have been used a lot in emotion research to identify
positive and negative behavioral expressions. For example, more
frown muscle activation can be an index of negative behavioral
expressions (Lohani and Isaacowitz, 2014; Lohani et al., 2018).
Psychological processes (e.g., stress) can lead to sympathetic
nervous system activity (Lundberg et al., 1994), which can elicit
muscular tension. Researchers have studied muscular activations
under controlled conditions to indexmental processes (Lundberg
et al., 1994; Wijsman et al., 2013; Luijcks et al., 2014). Applied
driving research has successfully assessed psychological processes
by assessing EMG (Healey et al., 1999; Fu et al., 2016; cf., Morris
et al., 2017; Ma et al., 2018).

EMG in Driving Context
In driving contexts, surface EMG has been utilized to study
psychological and physiological stress (Jonsson and Jonsson,
1975; Wikström, 1993; Balasubramanian and Adalarasu, 2007;
Ahlström et al., 2018). Stress and fatigue have been studied by
recording electrical activity from relevant muscles. For instance,
variations in the trapezius muscle (a major back muscle that
extends from the neck to shoulder blades and lower spine)
and deltoid (triangular muscle located on uppermost part of
an arm and the top of shoulder) are influenced by mental
stress (Wikström, 1993; Balasubramanian and Adalarasu, 2007;
Hirao et al., 2007; Wijsman et al., 2013; Luijcks et al., 2014; cf.,
Morris et al., 2017). A recent study (Lee et al., 2017a) recorded
trapezius muscle activity to detect stress in a driving simulator
under relaxed and stressed conditions. A continuous increase
over time in muscular tension was associated with greater stress
experienced due to driving task (Lee et al., 2017a). Muscular
tension can thus be a useful metric of stress level that can be
utilized in driving research.

It is worth noting that muscular fatigue and discomfort
are not isolated issues (Leinonen et al., 2005) and they cause
psychological distress and disrupt cognitive performance while
driving. Muscle fatigue while driving has been studied by
examining changes in muscular tension in shoulder and neck
muscles (Sheridan et al., 1991;Wikström, 1993; Balasubramanian
and Adalarasu, 2007; Hirao et al., 2007). Compared to the
beginning of the drive, continuous driving can lead to reduced
back muscles (e.g., trapezius and deltoid) activity and fatigue.
Muscular fatigue (measured by EMG of back muscles) is
associated with decreases in power of EMG activity-related
frequency band (Hostens and Ramon, 2005; Balasubramanian
and Adalarasu, 2007; Hirao et al., 2007). Surface EMG is a helpful
way of identifying discomfort in fatigued and weak muscles and
targeting rehabilitation for skeletomuscular problems specially
in professional or long-distance drivers (Balasubramanian and
Adalarasu, 2007). A recent study (Artanto et al., 2017) has also
used a low-cost EMG system to detect drowsiness. An EMG
sensor attached to muscles around eyelid region captured the
duration of eyelid closure as an indicator of drowsiness (Artanto
et al., 2017). Another recent study has proposed a system that
can detect real-time changes in EMG (Mazzetta et al., 2018).
Further research is needed to validate EMG’s applicability in
real-world settings.
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Practical Considerations
EMG measurement enable recording continuous data from the
specific muscle of interest without obstructing the driving task.
Such objective information can be helpful in learning about
muscular activity (and relevant cognitive states) that may not
be necessarily visible to the researchers or under the awareness
of the responder. However, it is essential to pay attention to
any outliers or irrelevant events that may add noise to the
EMG signal and impact signal interpretation. Irrelevant events
can include muscular activity due to driving-unrelated (e.g.,
continuous posture change, scratching skin, or touching the
electrodes) and driving-related (e.g., functional steering activity)
movement and yet unrelated to the cognitive state (e.g., mental
workload) of the driver (Mehler et al., 2009). In real-world
settings, it can be tedious to tease apart muscular activity due
to other confounding reasons from activity relevant to changes
in cognitive states. Furthermore, the task under investigation is
also of importance. For instance, a study that comparedmuscular
tension while driving car autonomously vs. manually found no
differences in EMG signals, but significant differences were found
for SCL (Morris et al., 2017). This suggests that for some tasks
the muscular activity may not significantly differ, but may still be
psychologically different in other modalities. This also highlights
the importance of multiple measures.

Thermal Imaging
Thermal Imaging Quantification
The measurement of changes in skin temperature is a useful
technique to detect and track attributes of a responder, such as
body posture and emotional expression (Gade and Moeslund,
2014; Rai et al., 2017). A special merit of this technology is
that it enables sensing the real-time state of motorists non-
invasively without disrupting driving related tasks. In addition,
unlike RGB cameras, thermal cameras do not depend on an
external illumination (Gade and Moeslund, 2014; Rai et al.,
2017). Objects that emit radiations in themid-to-long wavelength
infrared spectrum (3–14µm), such as the human body (but
not inanimate objects) can be detected via thermal imaging
(Gade and Moeslund, 2014; Rai et al., 2017). Changes in
temperature distribution, as captured by the thermal cameras,
are utilized to make meaningful interpretations. For instance,
facial thermography can be used to capture the heat distribution
in facial locations known to vary with sympathetic activity as a
metric of the varying psychological phenomena. Most commonly
investigated facial locations include the forehead and nasal
temperature changes.

Sympathetic autonomous nervous system activation may lead
to constrictions of blood vessels, thereby decreasing temperature
in extremities, such as the nose (Or and Duffy, 2007; Gade and
Moeslund, 2014). For example, mental workload changes lead to
temperature variations in the forehead, nose, cheeks, and chin
regions (Stemberger et al., 2010; Marinescu et al., 2018). A recent
study examined the validity and sensitivity of thermal imaging in
assessing variation in cognitive load (Abdelrahman et al., 2017).
Increased cognitive task difficulty led to significant increases in
the forehead temperature and decreases in nose temperature
(Abdelrahman et al., 2017). The largest effect sizes were found

when the difference in forehead and nose temperature was
estimated. Higher task difficulty led to an increase in forehead
and nose temperature differences (Abdelrahman et al., 2017).
Additional work has also examined real-time sensitivity of
thermal imaging and found that specialized thermal cameras
can detect changes in cognitive load with a latency of 0.7 s
post eliciting event (Abdelrahman et al., 2017). This finding
suggests that this methodology has a high relevance for real-time
assessments of cognitive load in applied settings like driving.

Thermography in Driving Context
In driving contexts, facial thermography was found to be useful
in assessing over-arousal constructs such as mental workload (Or
and Duffy, 2007; Murai et al., 2008). Performing a secondary
workload task (mental arithmetic) while driving in a simulator
as well as an on-road car led to a decrease in nasal temperature
with stable forehead temperatures (Or and Duffy, 2007). Drop
in nasal temperature also correlated with self-reported workload
(Or and Duffy, 2007). Another study found increases in the
difference between nose and forehead temperature increased
with mental workload (Kajiwara, 2014). Participants’ nasal
temperature varied as a function of mental workload in simulated
driving (Kajiwara, 2014). Workload variation indexed by changes
in nasal temperature were also reported during ship navigation
using a simulator (Murai et al., 2008), highlighting its utility in
applied settings.

Furthermore, facial thermography can be useful to examine
and infer heat distribution in faces during emotional states.
This method could be promising and may provide a non-
invasive approach to capture emotional states because
current methods of emotion recognition using facial features
detection software have limitations. One study used an
infrared thermal camera to non-invasively detect face regions
and recognize emotional states of motorists (Kolli et al.,
2011). This study suggests that thermography can improve
face detection algorithm for in-vehicle settings thereby
facilitating ADAS.

In another line of work (Cheng et al., 2007), a combination of
thermal infrared and color cameras have shown to be effective in
sensing body movements in real-time on-road driving. Similarly,
infrared streaming has been used to develop posture and
occupancy sensory systems (Kato et al., 2004; Trivedi et al., 2004).
Another recent study reported successful use of near-infrared
light and thermal camera sensors to identify aggressive driving
behavior (Lee et al., 2018) and were able to categorize aggressive
driving from relaxed driving. The above studies suggest that
thermography has the potential to be a useful non-invasive
technique that can be validated to capture cognition-relevant
states and improve traffic safety.

Practical Considerations
Thermal cameras are used in numerous industrial, agricultural,
and military settings (Gade and Moeslund, 2014). They
can be extremely useful in vehicular technology because
they are non-contact sensors and can work regardless of
external illumination. Nevertheless, further testing is needed
to better understand how this technology would improve our
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understanding of cognitive states in traffic safety. Further
systematic investigation and replication of thermography as a
function of cognitive workload, stress, and drowsiness after
controlling for confounding factors, such as environmental
factors (e.g., weather conditions and air conditioning), are
needed to be able to make confident assessments of cognitive
states. The results so far look promising.

Pupillometry
Pupil Quantification
Pupillometry is the measurement of pupil size and reactivity.
Modern pupillometry is measured via optical eye-trackers that
use some combination of monitoring infrared light reflections
from the cornea, the back of the lens, and the pupil, as well
as absorption of light by the pupil (e.g., dark-pupil tracking).
Most modern eye-tracking devices can monitor pupil location
(and eye-fixation location) with very high resolution (>1,000Hz)
non-invasively and at a substantial distance from a participant.
Thus, measurement can occur in highly ecologically valid
environments, without participants having to make any overt
responses. Since the 1960’s it has been shown that pupil dilation
changes as a result of mental activity—for example, increases
in arousal and cognitive workload (e.g., Hess and Polt, 1964).
In a classic study demonstrating the sensitivity of pupillometry
to cognitive demands, Kahneman and Beatty (1966) showed
that pupil dilation increases parametrically with an increasing
number of words to recall in a simple word list memory task.
Moreover, they showed that this increase in workload persists
over a maintenance interval, and reduces parametrically as
each word is retrieved (and released) from memory. These
findings, along with a number of other demonstrations of
pupillary sensitivity to cognitive workload, for example in math
problem solving (Sirois and Brisson, 2014), working memory
and individual differences in intelligence (Tsukahara et al., 2016),
aging and verbal memory load (Piquado et al., 2010), has led to
wide interest in this measure as a physiological marker of arousal
and cognitive effort.

Janisse (1977) remarked that the eye is the only “visible part
of the brain.” Indeed, detailed models of the neurophysiology of
pupillomotor functioning are developed and growing, including
an understanding of the innervation of the sphincter and
dilator muscles by the autonomic nervous system (Miller
et al., 2005), as well as the neuromodulatory relationship
between pupil dilation, activity in the locus-coeruleus (LC; a
neuromodulatory nucleus in the dorsal pons of the brainstem
strongly linked to phasic and tonic arousal, cognitive control, and
monitoring functions), and norepinephrine (Gilzenrat, 2006).
For instance, a high correlation (0.6) between spike frequency
and pupil diameter has been found, whereby large pupil diameter
equates to high LC activity (Rajkowski et al., 1994). Demberg
(2013) have also recently reported changes in pupillometry due
to linguistically induced cognitive load (e.g., comprehending
syntactically demanding sentences). Other recent work has also
examined user state related changes in pupil diameter in lab-
settings such as variations in valence and arousal (Kassem et al.,
2017) and interest in real-time (Jacob et al., 2018).

Pupillometry in Driving Context
Eye-tracking has been used extensively in studying visual
perception and attention in driving contexts, however the unique
use of pupillometry as an index of real-time physiological
indicator of cognitive workload is only lately growing in
popularity (Schwalm et al., 2008). For example, Cegovnik et al.
(2018) recently validated a low-cost eye-tracker and showed that
pupil dilation increases with increments in cognitive load due
to a secondary memory task (n-back) (see also Recarte and
Nunes, 2000 for similar results). Pupillometry has also been
adopted in driving research while motorists drove in a simulated
driving context. Pupil diameter was found to reliably increase
with increases in cognitive load (Palinko et al., 2010; Faure et al.,
2016). Other work has use machine learning algorithms to detect
cognitive load while driving from pupillometry data (Yoshida
et al., 2014). A recent study found that during simulated driving,
pupil dilation could detect increases in cognitive load imposed by
a secondary task within a lag of 1 s (Prabhakar et al., 2018). This
suggests that pupillometry could be used as a near-real time index
of cognitive load.

Pupillometry has also been used to differentiate between
alertness and drowsiness (Soares et al., 2013). Alertness is
associated with increased mean pupil diameter and decreases in
standard deviation (i.e., stable), whereas drowsiness is associated
with decreases in diameter, but increases in standard deviation
(i.e., fluctuations) in pupil diameter (Morad et al., 2000; Wilhelm
et al., 2009). Fluctuations in pupil size have been proposed to be
a reliable index of drowsiness-related impairment while driving
(Maccora et al., 2018). Pupil dilation was also found sensitive
to fatigue levels while driving with a decrease in fatigue being
associated with an increase in pupil diameter (Schmidt et al.,
2017). Although early, these findings, along with others (for a
recent review see Marquart et al., 2015; Maccora et al., 2018)
suggest that pupillometry is an efficient, ecologically valid, and
low-cost physiological reporter variable for indexing cognitive
states in driving in highly-controlled environments like realistic
driving simulators.

Practical Considerations
In lab settings, pupil diameter was found to be a reliable, non-
invasive, and real-time measure of workload (Marinescu et al.,
2018). However, in on-road settings, it is quite challenging to
capture interpretable pupil information due to large variations
in luminance that are hard to control across conditions
and participants. Indeed, photopupillary reflex is massive in
magnitude relative to changes in pupil size related to cognitive
and attentional factors. As such, if there are considerable changes
in lighting conditions (e.g., sunny vs. cloudy days), this can
create considerable noise in the pupillary signal. Moreover, if
specific conditions of interest are confounded with respect to
overall luminance (e.g., driving during the day vs. driving at
night), this overall pupillary light reflex-related shift should be
taken into consideration. Furthermore, if investigating event-
related pupillary responses in driving, one should be careful to
determine that differences in pupil dilation are not only due
to differences in visual stimulation (e.g., presenting a luminant
STOP sign). Modeling techniques have also developed methods
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to infer cognitive workload after accounting for some variations
in lighting conditions (Pfleging et al., 2016; Reilly et al., 2018).

Marshall (2002) have developed a signal processing method
for extracting high-frequency changes in pupil dilation that
they argue is uniquely related to cognitive components (Index
of Cognitive Activity or ICA). However, this method is a
commercially available “black box” system, and should be
interpreted with caution given that the exact algorithm used to
calculate ICA from raw pupillometry is not open source. Other
work has estimated an Index of Pupillary Activity (IPA) inspired
by ICA, that uses wavelet-based algorithms to decompose pupil
data (Duchowski et al., 2018). IPA was found to differentiate
between low vs. high mental workload (Duchowski et al., 2018).
Another important feature to consider is that measurement of
pupil dilation is affected by eye-movements and relative gaze
position (e.g., Gagl et al., 2011). When gaze position changes
from central to peripheral locations, the recorded pupil shifts
from a circular to an elliptical shape from the point of view of
fixed camera location. This change in the recorded geometry
of the pupil is accompanied by changes in overall pupil size,
irrespective of actual changes in dilation or constriction. Gagl
et al. (2011) have developed methods for the measurement and
removal of such systematic influences. Nevertheless, researchers
should be careful to measure gaze position and to design studies
such that likely visual target locations are not confounded across
conditions of interest.

CHALLENGES AND RECOMMENDATIONS

Psychophysiological research has made tremendous progress
in developing methods to quantify cognitive processes. Most
of this research has been conducted in carefully controlled
environments to be able to interpret with certainty what
changes in a physiological signal may imply about the
psychological phenomena under investigation. Physiological
signals are valuable to understand how people interact in real-
world contexts. Driving research is an excellent application of
psychophysiological methods to understand and interpret how
people interact with automation in natural settings, which in turn
can inform intelligent systems to improve driving performance
and safety. As evidenced by much of the growing research
base discussed above, psychophysiological measures can be
successfully adopted to meet these goals. At the same time, lack
of adherence to research protocols and guidelines can seriously
jeopardize meaningful use of these methodologies. Here we
highlight a few general challenges and recommendations that cut
across all psychophysiological measures in driving research when
collecting data from real-world driving settings—which are less
predictable than lab settings— to improve data-quality and aid in
effective interpretation.

Valid and Reliable Quantification
of Construct
Depending upon the task and setting (lab-based simulator or
field study), some physiological measures will be more suitable
and feasible than others. For example, in a simulator with very

controlled body movement, continuous blood pressure using
the volume clamp method can be collected. However, while
on-road, this equipment may compromise drivers’ safety and
thus is not feasible. Other measures like ECG and thermal
cameras are highly mobile and feasible. Careful observations
can allow interpretation of cognitive processes while driving.
One important concern is the possibility of misinterpreting
the relationship between physiological signals and cognitive
processes (Cacioppo and Tassinary, 1990; Cacioppo et al., 2007).
Often, physiological measures (such as HR, EDA, EMG) are
impacted by multiple processes, such as drowsiness, stress, and
workload, which can lead to interpretive caveats. Systematic
variations in different experimental conditions can help tease
apart the underlying mechanism causing autonomic activations
to be able to draw clear inferences. However, in an applied
setting like driving a car in unpredictable traffic, control over the
experimental task is largely out of the control of the researcher.
Confirmatory independent measures are important to validate
the construct of interest in the study. Similarly, it is helpful
to ensure that the construct of interest reliably varies across
conditions and that the experimental manipulation was effective.

Individual Differences
A combination of factors may influence physiological signals,
including trait-level variables such as demographic factors
(age, gender), task experience (professional, experienced,
inexperienced), anxiety, and certain health conditions and
medications (e.g., cardiovascular health). State-level variations
such as stress-levels unrelated to task, caffeine intake (which
may change autonomic activity), and engagement/motivation
and frustration during the task can also interact with individual
differences in ways that may not be readily apparent. Combining
data from participants after considering such trait- and state-level
variables can help in proper interpretation of study findings.

On a related note, a critical challenge in multi-modal
recordings is that individuals may be highly reactive as assessed
by one measure but not necessarily, according to another. There
is considerable variability across individuals in how closely
physiological, behavioral, and subjective measures covary over
time with one another (Lohani et al., 2018). Furthermore, it
is possible that only some individuals may be sensitive to the
experimental manipulation (Drews et al., 2012). Such individual
differences may lead to variations in psychophysiological
assessments and may also explain to some extent lack of
significant differences across experimental conditions. Many, if
not all, of these measures are currently utilized within paradigms
where we are studying relative changes in the outcome across
conditions (e.g., P3b amplitude is a difference wave, HRV%
change, %signal change in BOLD response, etc.), for which
these measures do not have currently well-understood absolute
thresholds for making strong absolute judgements. While there
isn’t a fixed threshold for physiological measures that can be used
across individuals to define high and low arousal levels, relative
changes from baseline can be a useful way of assessing variations
in arousal levels from optimal levels for the individual. If the
system can be calibrated on what is a “normal” range for an
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individual, then significant variations from this calibrated range
can be a way to detect sub-optimal arousal levels.

Baseline Assessments
Baseline assessments provide insights about the physiological
state of the responder when the experimental condition was
absent. It also allows to control for physiological activity due
to any prior conditions, so that the change in the experimental
condition of interest is interpreted relative to the state right
before the condition started. A single baseline is generally not
enough, especially when there are multiple conditions. It is a
good practice to capture as many baseline assessments and as
close to the experimental condition as possible. Another alternate
design to consider (for measures with high temporal resolution)
is an event-related design, where activity is time-locked to specific
events of interest. In this design, pre-event activity in the measure
is subtracted from the overall physiological time series, resulting
in a strong baseline control for each trial (e.g., ERPs).

Sampling Rate, Filtering, and Signal Quality
Nearly all physiological signals discussed above are analog
signals, which have to be digitized for further processing.
Choice of optimal sampling rate and filtering helps avoid
signal distortions (Jennings and Allen, 2016), and as such,
knowledge of signal processing characteristics of the target
physiological measures is necessary for researchers to effectively
use these tools. Optimal sampling rate differs by the physiological
signal’s frequency characteristics, and poor sampling rate can
distort waveform characteristics, and induce artificial oscillatory
characteristics that are not part of the true analog signal (i.e.,
aliasing). For example, for HRV analysis, the recommended
sampling rate is at least 250Hz (Task Force of the European
Society of Cardiology, 1996). Some commercial wearables (e.g.,
fitness-related wrist watch sensors) have sampling rate as low
as 60Hz, which will lead to signal aliasing (Jennings and Allen,
2016) and inaccurate and uninterpretable HRV values. The
sampling rate needs to be at least above the Nyquist frequency
(2x the sampling rate of the highest frequency), and current
standards suggest a sample rate 3–4 times the highest frequency
component of physiological signal. Advancements in modern
computing allow for research-grade equipment to sample far
above Nyquist for most of the measures discussed (>2,000Hz)
during data acquisition. Of course, data can always be down-
sampled post data collection. As discussed in sections “Heart
Activity Quantification” and “Practical Considerations” on heart
activity, quantification using wearables can lead to inaccurate
assessments (Laborde et al., 2017) due to poor sampling rates,
lagged responses, and noisier signals to name a few, which would
lead to inaccurate interpretations.

Filters are helpful in getting rid of artifacts and noise
not relevant for the physiological signal being processed. For
instance, muscle and electrical noise (around 60Hz) are not
meaningful while interpreting EEG and ERP data, and thus
data outside the range of interest (typically not higher than
40–50Hz) can be bandpass filtered. However, if EMG activity,
which has a much higher frequency content, is of interest,
then bandpass filtering with allow low-pass cutoff at 500Hz

and high-pass cutoff at 20Hz, is often suitable (van Boxtel,
2001). Visual inspection pre- and post-filtering process can help
determine how filtering is affecting a signal. Note that all filters
distort the waveform and spectral characteristics, so unnecessary
filtering should be avoided and researchers should take care to
understand exactly how filters are impacting their data in time
and frequency domains.

For each psychophysiological measure discussed, researchers
have a growing number of indices that can be examined (for
example, for HRV, time-based, frequency-based, and non-linear
measures can be derived). Choice of metrics should be carefully
evaluated, as somemetrics may bemore suitable tomeet the goals
of the study, while others may not be suitable. For instance, some
metrics require minimum duration of data and falling short of
such requirements will lead to misrepresentative findings (e.g.,
standard deviation of R-R heart beats or SDRR is considered
more accurate when calculated over 24 h vs. 5min or shorter
intervals; Shaffer and Ginsberg, 2017). Such choices should
be made a priori, based on the research question of interest
and links between a measure and its purported psychological
interpretation based on prior research. Such flexibility in multi-
modal recording comes at the cost of an increasing number
of “experimenter degrees of freedom,” that can lead to inflated
Type-I error rates, if a consistent analysis pipeline is not
followed. It is also important to use comparable durations
of physiological signals across conditions and participants for
appropriate interpretation. Finally, great attention to accurate
event markers is critical for valid interpretation within and
across participants in event-related designs. This can be an
issue when using commercial products that are not designed for
research purposes.

Innovation
A limitation of most current psychophysiological research-grade
measures is the need for using contact sensors (placed on
skin). Non-contact sensors are beginning to be tested in applied
settings, which can make physiological data collection even less
invasive. For instance, ECG data can be derived from high-
quality RGB cameras, or sensors could be placed on the steering
wheel and driving seats (but should meet the recommended
requirements). While these can potentially be a great approach
to counter the limitations of contact sensors, caution is advised
while considering them because new limitations or inaccuracies
in assessment are possible and further research and testing
is required to adopt them in research. Commercial products
may not meet the requirements recommended by the scientific
community, which can lead to poor data quality and invalid
interpretations. For example, smartphone camera-based PPG
sensing estimates have poor sampling rate and can lead to
inaccurate assessments (Laborde et al., 2017). It is essential
to ensure that the guidelines for measures are met before
investing time and resources to avoid technical issues in data
collection and interpretation. For instance, as discussed earlier,
it is critical to collect physiological data with recommended
frequency sampling to avoid aliasing (Jennings and Allen, 2016).
Only equipment that have been or can be validated against
research-grade devices should be adopted for research purposes.
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Classification
Reliable and valid assessment of cognitive states is the
groundwork to develop inputs to advance state detection-
workload managers and “aware” systems. For instance, a recent
study reported a reliable method to elicit stress in naturalistic
driving scenarios (Baltodano et al., 2018). Given that onemeasure
may not be enough to reliably measure subtle changes in
cognitive state, a multi-method approach is critical to capture
state-level variations that may not be apparent through a single
measure alone. Research has shown that multi-modal approaches
provide a reliable (Schmidt et al., 2011; Borghini et al., 2014; Chen
et al., 2017) way to sense and assess cognitive states of motorists
in real-world settings. Notably, due to the dynamic nature of
the physiological signals, conventional linear approaches are
not always appropriate in modeling and predicting cognitive
state (Chen et al., 2015). The discussed physiological signals
are often non-stationary overall but for the briefest periods
of time. As such, innovative methods of combining temporal
and spectral resolution (time-frequency analysis) have been
developed in some domains (e.g., EEG), but their application to
other physiological signals is only in its infancy.

Once data have been processed to remove artifacts or
irrelevant noise, machine learning techniques could be trained
on these data to identify “risky” sub-optimal levels of cognitive
states, such as low-arousal states of drowsiness and fatigue
associated with unsafe driving performance. During the training
phase, multimodal features extracted from physiological training
data could be used to train models to classify observations
into high-arousal states (e.g., due to high stress and workload),
optimal-arousal state, vs. low-arousal state (e.g., due to
drowsiness and fatigue). During the test phase, the fully-specified
machine learning algorithm can be tested in terms of its capacity
to accurately classify observations into respective arousal states.
Indeed, cognitive state detection based on multimodal feature
analysis and classifiers have been also used to detect stress (Yang
et al., 2016; Chen et al., 2017; Lee et al., 2017b), alertness and
drowsiness (Forsman et al., 2013; Correa et al., 2014; Chen
et al., 2015; Wang and Chuan, 2016), fatigue (Fu and Wang,
2014; Wang, 2015; Fu et al., 2016; Li et al., 2017; Wang et al.,
2017), and workload (Borghini et al., 2014; Yang et al., 2016)
in real-time. Such studies have integrated data from more than
one measure by conducting multi-modal analysis to extract the
relevant features to capture the psychological phenomena at
hand. A comparison of multiple classifiers to train & optimize
machine learning algorithms can help determine the best fitting
model to represent changes in cognitive states that can explain
driving performance (Nadeau and Bengio, 2000; Fairclough
et al., 2015; Balters and Steinert, 2017; Tran et al., 2017). Thus,
utilizing multi-modal physiological signals, models could be
trained to learn and predict motorists’ sub-optimal cognitive
states associated with unsafe-driving behavior.

The optimized machine learning algorithms could
accordingly inform advanced state detection managers to
trigger warnings or otherwise intervene when sub-optimal
cognitive states associated with risky driving behavior are
detected (Aidman et al., 2015). The ability to predict unsafe

levels of physiological arousal will enable targeted augmentation
to modify motorists’ cognitive state to promote safer driving
behavior (Schmidt and Bullinger, 2017; Schmidt et al., 2017;
Aricò et al., 2018). For instance, countermeasures to augment
cognitive states, such as thermal stimulation (Schmidt and
Bullinger, 2017; Schmidt et al., 2017) and warning signs or verbal
communication (Schmidt et al., 2011; Aidman et al., 2015) can
be used by an automated system to modify drivers’ cognitive
state. This may especially benefit vulnerable groups such as
inexperienced drivers (Noordzij et al., 2017; Yan et al., 2017) and
older (Costa et al., 2017) drivers who may be more susceptible
to cognitive overload. Furthermore, a person-centered approach
can account for individual differences, such as the role of
age, driving profile, trust, and reliance on automation. For
instance, a recent study used discriminant analysis to account
for motorists’ driving-styles and individual difference factors
(e.g., gender, age, anxiety, anger) and also identify motorists’
EEG and EDA response features to classify motorists’ safe vs.
risky driving tendencies (Liang and Lin, 2018). This study
shows that individual differences can explain variations in
driving performance and a customized approach may also
help improve model prediction over time by accounting for
motorists’ characteristics and preferences. For example, the
low, normal, and high physiological arousal ranges will vary
depending on attributes such as anxious, risky, and distress
reduction driving styles of an individual (Liang and Lin, 2018)
and prediction of cognitive state-level variations may be more
accurate when predictions account for such individual-level
variations. Thus, a person-centered approach will improve
reliable predictions of cognitive states in real-world contexts by
intelligent driving systems.

RESEARCH APPLICABILITY IN
REAL-WORLD SETTINGS

As the reviewed literature in section, “Psychophysiological
Measures to Assess Cognitive States” suggests, many interrelated
states could lead to a similar pattern of findings on a physiological
measure (e.g., mental fatigue, drowsiness, lower vigilance, and
mind wandering are all sensitive to similar EEG/ERP indices).
After considering the overlap across findings from interrelated
constructs, in Table 1 we have summarized the expected pattern
that each physiological measure will have during a low vs. high
arousal state in an applied driving context. There are a few
points to consider. First, changes in several related cognitive
states can lead to similar changes in arousal. For example,
increases in driver workload, stress, or vigilance may occur under
different contexts, but may similarly lead to heightened arousal.
Second, even though arousal is continuous, we chose to classify
driver states into categories of low and high arousal because
both extremes are sub-optimal for driving performance. Third,
cognitive states are complex and change across time. For instance,
in the current review, we have placed mind wandering in a low-
arousal state based on similar patterns of findings as drowsiness.
However, mind wandering is a convenient short-hand for a
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more complex constellation of non-externally directed cognitive
states (see Smallwood and Schooler, 2006 for a review) and
depending on the context, such mind-wandering states can yield
states of heightened-arousal as well. Similarly, fatigue can be
categorized as high-arousal due to prolonged cognitive overload
or it can be passive, because of underload due to monotonous
driving conditions, for example (Saxby et al., 2008; Matthews
et al., 2019). With further empirical evidence in naturalistic
environments, a better characterization of complex cognitive
states could be developed.

It is still an open question if interrelated cognitive states
could be successfully differentiated from other similar states
in naturalistic environments (see Cacioppo et al., 2007 for
challenges with psychological inference). However, physiological
measures could be used to assess sub-optimal levels of general
arousal in real-world settings and intelligent systems can use
this information to trigger augmentation strategies even if we
cannot fully differentiate between specific cognitive states besides
along their arousal axis. We have reviewed how physiological
responses across multiple measures can provide a rich array
of response data relevant to domains that are of interest to
driving researchers (e.g., attention, fatigue, workload, etc.). These
measures provide unique information and unique sensitivity to
experimental manipulations beyond behavioral responses alone.
Thus, their current and future utility in real-world driving
research is important. This does not mean that measuring one
or even a large number of these measures alone will provide
us with a direct interpretation of a covert state (e.g., becoming
increasingly frustrated about an aggressive driver behind you).
Before the state of the research matures to be able to address such
a lofty goal as predicting specific cognitive states (Yarkoni and
Westfall, 2017), we first need careful on-road experimental work
to understand the sensitivity and specificity of these measures
to specific changes in driver-relevant states in observational and
experimental research in real-world settings. Thus, the focus of
the current review is not to claim that measurement of multiple
physiological measures in real-world driving could accurately
predict motorists’ specific cognitive state. Rather, our goal is
to summarize the feasibility of each of these measures for
integrating high-quality psychophysiological methodology into
real-world driving research. Table 1 presents the current working
predictions that are expected based on the available literature,
but more work is needed to be able to use physiological signals
to infer psychological processes. The current review represents a
summary of initial steps in that direction.

In Table 2, we have summarized the research applicability of
the reviewed psychophysiological measures. Although all of these
measures can provide valuable insights in the controlled settings
of a lab, some measures are more feasible to use and interpret
than others in real-world driving contexts. A few factors that
may play a role in determining the practical use of physiological
measures in applied settings are: the degree of coupling between
the measure and subtle changes in cognitive states, temporal
resolution, psychometric reliability, ease of data collection (e.g.,
setup time), sensitivity to artifacts, and the degree of invasiveness
and disruption to normal driving. After considering the available
evidence, we have categorized each measure’s real-world research

applicability into low, medium, or high levels. Moreover, certain
measures may be better candidates than others for a near real-
time assessment in applied settings. We review the real-world
applicability and feasibility of each of the measures in Table 2.

Some promising work suggests that cardiovascular measures
may be robust in detecting near real-time changes across multiple
domains. Studies have shown that cardiovascular data can
reliably detect changes in workload (Mehler et al., 2009, 2012;
Lenneman and Backs, 2010; Stuiver et al., 2014), fatigue (Patel
et al., 2011; Matthews et al., 2019), and drowsiness (Vicente
et al., 2016; Kurosawa et al., 2017). Like any physiological
signal, cardiovascular data is susceptible to artifacts that could
otherwise lead to inaccurate estimations. However, recent
analytical advances have led to an improved use in real-world
settings even in the presence of substantial recording artifact.
For instance, an analysis approach using short segments of
cardiovascular data (e.g., a moving window of 30 s; Stuiver et al.,
2012) can be used to detect workload demands during driving
(Stuiver et al., 2014). Use of smaller temporal windows of data
allow for an investigation of the short-term effects of cognitive
state without being overly susceptible to artifacts. Recent work
has shown that frequency analysis techniques on ECG data
can also be utilized to detect early onset of fatigue (Matthews
et al., 2019). While the limitations of PPG discussed earlier still
apply, recent preliminary work using near-infrared illumination
PPG (which overcomes confounds of illumination and motion-
related inaccuracies) while driving seems a promising direction
for future practical applications (Nowara et al., 2018). Another
recent work has developed a noise-resistant algorithm specifically
designed to analyze PPG waveforms (van Gent et al., 2018),
which can provide researchers an open-source and validated
heart rate analysis software to overcome some existing limitations
of PPG data processing, making it more feasible for applied
driving research.

EDA has been found to be a robust measure of sympathetic
arousal in driving contexts in real-world settings (Mehler et al.,
2012; Schneegass et al., 2013; Ruscio et al., 2017). EDA is also
easy to set up and collect from a motorist without obstructing
the driving process. Even though it has a slower response time
and provides only a broad sense of arousal (a combination of
workload, stress, fatigue, etc.), EDA in an applied uncontrolled
environment can estimate relative changes and periods of
stability in sympathetic activity of a motorist with an upper
temporal resolution of approximately 3–5 s. For example, recent
work found EDA to be suitable in capturing stress-level variations
in a real-time unconstrained setting (ElKomy et al., 2017).
Feature extraction and pattern recognition algorithms have
also shown reasonable success recently in detecting changes in
cognitive states (Chen et al., 2017; Liu and Du, 2018). Moreover,
adaptive filters have been successfully used to remove motion-
related artifacts for automatic and accurate detection (up to
95% sensitivity) of state-level variations in cognition (Affanni
et al., 2018). Such recent processing and analytic advances with
EDA data has shown its high relevance in applied intelligent
automation. For example, a development approach proposed for
monitoring driver’s fatigue levels and functional state utilizes
automated analysis of EDA indices in their detection module
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to improve intelligent vehicular systems (Liu and Du, 2018;
Savchenko and Poddubko, 2018).

EEG, a direct measure of brain’s electrical activity, can provide
robust measures of cognitive state variations while driving,
including levels of drowsiness (Liang et al., 2006; Wei et al.,
2018), fatigue (Liu et al., 2015; Fu et al., 2016; Hung et al., 2017),
and workload (Dasari et al., 2017; Zander et al., 2017). EEG
has high temporal resolution and is a direct measure of brain
activity. However, data collection (e.g., longer setup time) and
processing in real-world setting (e.g., movement artifacts) can be
quite challenging to implement into a real-world driving research
protocol (Popescu et al., 2008). At the same time, there have
been innovative technological and analytical developments in
EEG acquisition. For instance, efforts in brain computer interface
applications have utilized a single electrode to classify relaxed
vs. cognitive workload phases (Shirazi et al., 2014) and monitor
fatigue levels (Morales et al., 2017). Recent work extracted
features from a 6-channel EEG dataset to classify mental tasks
with up to 83% accuracy rate (Neshov et al., 2018). Other recent
work has reported detection algorithms that can be used to
accurately classify fatigue (Li et al., 2017; Gao et al., 2018). In
other work, a novel approach to detect drowsiness has been
proposed which reduces calibration time for a new user by
90% using a hierarchical clustering method, which accounts for
inter- and intra-subject variability (Wei et al., 2018). Automatic
drowsiness detection algorithms based on only a single target
channel can allow real-time neural assessments of cognitive states
(Belakhdar et al., 2018). With increasing advancements in sensor
development and data processing, we hold an optimistic view of
adopting EEG-based measures in driving research, albeit after
considerable validation (Kosiachenko and Si, 2017; Krol et al.,
2017; Zander et al., 2017; Byrom et al., 2018). Recent work has
also shown the applicability of specific ERP components (such
as the P300), some of which show good psychometric properties
(e.g., Cassidy et al., 2012), and can be adopted to brain-computer
interfaces (Piña-Ramírez et al., 2018). Future work and reliable
replication of studies are required to ensure EEG and ERPs could
be assimilated in human-machine automation interface.

Traditional fNIRS has lower temporal resolution and may
additionally be difficult to collect in applied settings. However,
recently, mobile-friendly systems have been developed and used
in applied domains (von Lühmann et al., 2015) including exercise
physiology (Byun et al., 2014), clinical monitoring (Kassab
et al., 2018), and infant developmental research (Quaresima
et al., 2012). Importantly, these advancements mean that fNIRS
measurements can be performed in naturalistic environments
without considerable restraint. As the development of ultra-
portable systems grows (e.g., battery powered mobile systems,
McKendrick et al., 2016), fNIRS will likely form a novel
complement to the many other physiological measures discussed
here, in part because of its unique capability to image neural
hemodynamics and reveal changes in brain activity with
improved spatial resolution compared to other portable and
non-invasive neurophysiological methods (e.g., EEG; Ahn and
Jun, 2017). For instance, a recent study adopted a wearable
fNIRS system (with sensors placed on a baseball cap making
it less intrusive) to measure cognitive distraction while driving

(Le et al., 2018). Thus, while these methods are still in their
infancy compared to many of the other methods discussed here,
the ability to reveal neural mechanisms of cognitive states in
real-world domains such as driving is promising.

Similar to fNIRS, thermal imaging also shows some early
promise. It is a non-contact technology that has high relevance
in applied settings, including driving (Lee et al., 2018). For
example, recent work has shown the validity of thermal imaging
in indexing cognitive load. In these studies, changes in nasal
and forehead temperatures were observed as a function of task
difficulty in a non-driving context (Abdelrahman et al., 2017;
Marinescu et al., 2018). However, research in real-world settings
is currently limited. Existing preliminary work has focused
primarily on understanding the sensitivity of this measure in
well-controlled environments. Future work will help qualify the
utility and validity of thermal imaging in real-world conditions.

On the other hand, several measures, despite clear utility
in a lab environment, may be currently of less use in real-
world settings. For example, pupillometry in well-controlled lab
settings can provide helpful information in interpreting user
state (e.g., Pfleging et al., 2016; Cegovnik et al., 2018). Moreover,
with the development of desktop-mounted eye trackers, pupil
dilation and constriction can be measured non-invasively and
remotely with high spatial and temporal resolution. In lab
settings, where features such as luminance can be controlled and
measured, recent work has shown success in using pupillometry
to examine mental workload in an unconstrained setting (e.g.,
Lego construction; Bækgaard et al., 2019). In driving, some
researchers have suggested that pupil-based measurements are
highly relevant for assessment of drowsiness (Maccora et al.,
2018). However, detection of pupil diameter in real-world
settings with rapidly changing and uncontrollable variations
in luminance is a critical confounding factor in the utility of
pupillometry in driving (Kassem et al., 2017).

Similarly, EMG can be utilized in lab settings to understand
psychological processes. For example, EMG in combination
with other psychophysiological measures was recently utilized
in detecting fatigue in drivers (Fu et al., 2016; Ma et al., 2018).
Preliminary research has also proposed the use of EMG to
detect drowsiness (Artanto et al., 2017) and real-time monitoring
of muscle activity (Mazzetta et al., 2018). However, in applied
settings such as driving, EMG may have only low utility, in part
because the necessary motor activity needed to engage in the task
(e.g., turning the steering wheel and actuation of break) can cause
uncontrolled changes in muscle activity that can be confounded
with the psychological variance in EMG, which is an order of
magnitude smaller than these artifacts.

At the same time, ongoing methodological developments are
resulting in more efficient systems, improved signal-to-noise
ratio, and improved signal-processing methods, all of which
culminate in rapidly improving the reliability and validity of
acquisition across these multiple methodologies. Some attempts
to assess cognitive states using multiple methods have been
integrated in non-driving domains (ElKomy et al., 2017; Ko et al.,
2017; Moghaddam and Lowe, 2019) and multi-method work
in real-world driving contexts are already underway (Fu et al.,
2016; Brouwer et al., 2017; Zander et al., 2017; Aricò et al., 2018;
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Belakhdar et al., 2018; Haouij et al., 2018; Paredes et al., 2018;
Rastgoo et al., 2018).

Taken together, we have reviewed a growing body of
empirical evidence suggesting that physiological measures can
be used to sense and assess changes in the cognitive states
of motorists during real-world driving. Through this selective
review, we believe that the strengths and limitations of
adopting physiological measures in driving can clearly extend
to other domains such as the use of aircraft, trains, and ships.
Furthermore, we see growing promise for the application of
covert monitoring methods like those reviewed above with the
increasing rise in semi-automated technology, where motorists
will become less directly involved in the driving process.
As such, the development of intelligent driving assistance
systems will need to utilize non-behavior-based measures to
index covert cognitive states of a motorist in the absence
of any overt behavior. The physiological measures reviewed
above have the potential to detect sub-optimal arousal levels
associated with risky driving behavior and inform state detection-
workload managers and “aware” systems to trigger warnings

or intervene, resulting in a closed-loop system in the absence
of any overt-driving behaviors. Before we reach such a future
however, the field needs to adopt rigorous standards for the
use of psychophysiological measurement in real-world settings.
We hope to see a future of increased collaboration and
integration of basic psychophysiology, human factors, and traffic
safety research. Such integration is necessary to advance the
development of effective human-machine driving interfaces and
driver support systems, with the ultimate goal of improving
traffic safety.
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